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Abstract

Changes in climate factors affect the distribution of various tuna species differently due to

their unique physiological adaptations and preferred habitats. As the resulting spatial distri-

butions of tunas alter in response to climate change and climate variability, the distribution

of fishing effort will, in turn, be affected. This study uses a quantitative model to estimate the

impacts of SST and ENSO events on trip distance of the Hawaii deep-set longline fleet

between 1991 and 2020. The results show that the higher the SST of the fishing grounds of

the Hawaii longline fleet, the longer trip distance; whereas ENSO events could result in

shorter trip distance, possibly due to changes in catch rates of different tuna species through

spatial redistribution during El Niño and La Niña events.

Introduction

Impacts of climate change and climate variability on commercial fisheries are widely studied,

and focus primarily on changes to fish biomass [1–10] and spatial distribution of marine spe-

cies [1, 6, 7, 11–21]. Although humans are an important component of marine ecosystems, few

studies have examined how climate change and variability impact fisher behavior [22–27].

Haynie & Pfeiffer [23, 24] stressed the importance of including fisher behavior in predicting

the impacts of climate change on fisheries due to the complex interactions between fisher

behavior and marine ecosystems. In particular, spatial distribution of fishing is influenced by

the interactions of “physical, biological, and economic mechanisms” [24]. Rising ocean tem-

peratures and El Niño-Southern Oscillation (ENSO) events could influence the spatial distri-

bution [1, 6, 7, 11, 17–20, 28, 29], abundance [1, 7, 9, 17, 20], and catchability [1, 6, 11, 19–21,

30–33] of highly migratory species like tuna as different species have different spatial responses

to climate change and variability due to their unique physiological adaptations and preferred

habitats [6, 19, 34–36]. As a result, fisheries that target different tuna species could be affected

correspondingly by climate change and variability [6, 19].

Studies have shown that locations of commercial tuna fisheries are influenced by climate

change and climate variability [6, 19, 20, 30, 37], and despite humans being an important part

of marine ecosystems [23, 24], no study has quantified the spatial reaction of fishers who target

tuna in relation to climate change and climate variability. The Hawaii longline fishery provides

a good case study to examine the impacts of climate factors on fisher behavior. Hawaii’s
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centralized location in the North Pacific Ocean allows longline vessels the flexibility to go in

any direction as their catches respond to changes in climate. For example, vessels could travel

further north or east to cooler parts of the ocean when fishing grounds become warmer and

unfavorable for tuna habitat. Vessels could also travel to fishing grounds with higher catch per

unit effort (CPUE) driven by ENSO events [30]. In addition, a long time series (30-year

period) of fishery-dependent data, environmental variables, and climate indices are available

for empirical modeling. The main purpose of this study is to examine how climate factors have

affected the Hawaii longline vessels’ trip distance; specifically, the interactions of climate with

tuna species’ spatial distributions and catch rates and the subsequent impacts on vessels’ trip

distance are evaluated. As trip distance has a direct relationship to fuel cost, the most impor-

tant variable cost item in the Hawaii longline fishery [38], any changes in trip distance would

directly impact the economic performance of the fishery.

This study examines the relationships between climate factors and vessels’ trip distance for

the Hawaii deep-set longline fishery over a 30-year period (1991–2020). This period was char-

acterized by rising ocean temperatures and multiple strong and mild El Niño and La Niña

events in the Pacific Ocean. During this period, the Hawaii longline fishery expanded both

fishing efforts and fishing grounds [39, 40], despite policies limiting access to particular areas

[41]. Understanding the past relationships between climate factors and trip distance may help

predict the impacts of climate change and climate variability on future fishing operations and

the subsequent economic effects, such as changes in fishing costs and net revenue. This infor-

mation can be used to advise fisheries management strategies.

Though few studies have developed models to quantify the effects of climate change and cli-

mate variability on fisher behavior, such as trip distance, Haynie & Pfeiffer [23] examined the

effect of the size of cold pool (a pool of arctic water that remains cold (< = 2˚C) and occurs

near the seafloor of the Bering Sea forming a barrier for a variety of species) on trip distance in

the Bering Sea walleye pollock fishery. Using a similar approach as Haynie & Pfeiffer [23], this

study incorporates two climate factors that are widely recognized as drivers affecting fishing

location of commercial fisheries in the Pacific Ocean: sea surface temperature (SST) and

ENSO events, to develop a model that quantifies their influence on the trip distance of Hawaii

deep-set longline fishery. The model also incorporates other important factors that may affect

trip distance including diesel price, quarterly biomass controlling seasonal fishing patterns,

management policies that directed the fishing location access, temporal variations, and vessel-

specific fixed effects.

Materials and methods

Fishery, climate change, climate variability, and tuna distribution

The Hawaii deep-set longline fishery operates primarily outside the U.S. Exclusive Economic

Zone (EEZ) in the North Pacific Ocean (from 180˚W to 120˚W and from equatorial waters to

around 40˚N), targeting bigeye tuna (Thunnus obesus), with little foreign competition [40].

Honolulu is the major port for the Hawaii longline fishery. In 2019, it was the 9th largest com-

mercial fishing port in terms of landing value, and 23rd largest in terms of landing volume

[42]. The scale of the fishery, in terms of number of fishing sets, and the fishing grounds have

expanded tremendously over a 30-year period (Fig 1). The temporal and seasonal changes in

fishing locations were related to oceanographic and environmental conditions that affected

catch rates [39, 40]. The operational aspect of the fleet includes deploying deep-set hooks early

in the morning and hauling in the afternoon or evening [43, 44]. Hook depth was set between

100 m and 400 m [43], overlapping the vertical habitat of bigeye tuna during daytime (200 m

to 400 m below the surface) [44, 45], with most bigeye tuna caught at depths greater than 200
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m [44]. The vertical overlap of bigeye tuna swimming depth and deep-set longline gear has a

direct impact on bigeye catch rates in the Hawaii longline fishery [28, 40, 44, 45]. With increas-

ing ocean temperatures and ENSO events changing the thermal structure and oxygen concen-

tration in different parts of the Pacific Ocean [7, 29, 33, 46, 47] and altering the spatial

distributions of tuna species [6, 7, 11, 17–20, 28, 29], it is reasonable to expect that changes in

climate factors would also impact tuna catch rates and spatial operations of the Hawaii longline

fleet.

Effects of climate change and climate variability on tuna distributions

There is evidence that ocean warming has shifted the tuna distribution poleward by 6.5 km per

decade in the northern hemisphere [17]. In the past four decades (1960–2011), the percentages

of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) caught by long-

liners have shifted from tropical to subtropical areas in the Pacific Ocean during periods of

increased SST [11]. Climate change and variability are expected to continue to affect tuna

Fig 1. Spatial extent and density of fishing sets of Hawaii deep-set longline fishery, 1991–2020. Note: Only included trips that departed from and returned

to the Honolulu port. Data records with effort by less than three individual vessels in 5˚ x 5˚ in a day were removed to meet confidentiality requirements.

https://doi.org/10.1371/journal.pclm.0000143.g001
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biomass, distribution, and subsequently fishing patterns. Senina et al. [9] projected that, in the

areas where the Hawaii longline fishery currently operates, climate change impacts alone

(without fishing) would decrease bigeye tuna biomass up to 18% in the western and central

Pacific Ocean (WCPO), and increase bigeye tuna biomass by 8% in the eastern Pacific Ocean

(EPO) during the 21st century. Focusing on the effect of climate change on the Hawaii longline

fishery, Woodworth-Jefcoats et al. [10] projected that ocean warming alone would lower the

bigeye tuna biomass by 20% by 2100 because rising ocean temperatures reduce plankton bio-

mass, and thus food available to predators. Tuna and billfish species richness was projected to

shift northward and eastward in the North Pacific Ocean, potentially shifting the Hawaii long-

line fishery’s fishing activities further from the port in Hawaii or changing the homeport to the

mainland west coast.

Many studies confirmed that ENSO events affected the preferred habitat and distribution of

different tuna species in the Pacific Ocean vertically [6, 19, 21, 28, 29, 46], horizontally [6, 7, 18–

20, 30, 48], and northward [21, 47]. Historical data also showed changes in tuna catches associ-

ated with ENSO events [6, 19–21, 28, 30, 33]. ENSO events have led to uneven changes in the

vertical thermal structure and vertical extension of tuna habitats across the Pacific Ocean and

have induced changes in the spatial distributions of different tuna species due to their unique

physiological adaptations and preferred habitats. The preferred depth of adult bigeye is mainly

below the thermocline [44, 49], while the preferred depth of yellowfin, skipjack, and albacore

(in temperate latitude) is above the top of thermocline [50–54]. During El Niño events, the ther-

mocline flattens across the equatorial Pacific, rises in the western Pacific, and deepens in the

eastern Pacific. The opposite happens during La Niña events. Tagging studies in the Pacific

Ocean found that bigeye tuna’s swimming depth had a strong relationship with thermocline

depth, and the deepening of the thermocline in the eastern Pacific during El Niño events was

associated with deeper distribution of bigeye [28]. The shoaling of the thermocline (rising of

depth of mixed layer) in the western Pacific during El Niño events reduces the depth yellowfin

can utilize to search for food as their preferred depth is above the thermocline. When the pre-

ferred habitat shrinks due to El Niño events, there is greater vertical overlap between the yellow-

fin preferred habitat and the depth of surface fishing gear in the western Pacific. During La

Niña events, deepening of the thermocline in the western Pacific extends the vertical habitat of

bigeye and yellowfin, which decreases their vulnerability to surface gears [6]. Conversely, skip-

jack tuna are not affected by the changes in thermocline due to ENSO events, as they inhabit the

surface layer of the ocean [6]. Several studies found the variations of tuna catch rates were asso-

ciated with ENSO-induced vertical change in thermal structure. Abascal et al. [28] suggested

that the strong El Niño in 2015 that deepened the thermocline in the eastern Pacific could have

contributed to the increased bigeye catch rates by the Hawaii longline fleet in that area. In a sim-

ilar longitudinal region, increased bigeye hook rates were observed by tuna longliners at the

western edge of the eastern tropical Pacific Ocean (between 130˚W and 160˚W) during El Niño

years, possibly due to the expansion of bigeye’s preferred depth habitat in that area [21].

Changes in thermocline also alter the temperature habitats for tuna (temperature at which

tuna occur) in different parts of the Pacific Ocean. Temperature habitats for tuna vary by spe-

cies, with bigeye occurring at the lowest temperature ranges, followed by albacore, yellowfin,

and skipjack. Temperature habitat for bigeye is also wider than the other three tuna species

[19]. During El Niño events, the shallowing thermocline rises and extends the temperature

habitat vertically for tunas in the western Pacific. During La Niña events, the deepening of

thermocline deepens and contracts the temperature habitat in the western Pacific [19]. Japa-

nese longline fishery observed higher (lower) bigeye CPUE and lower (higher) albacore CPUE

in the western Pacific during El Niño (La Niña) events. This pattern corresponded with the

vertical extension (contraction) of temperature habitat for bigeye during El Niño (La Niña) events
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and the shoaling (deepening) of the temperature habitat for albacore in the western Pacific during

El Niño (La Niña) events [19]. Japanese and U.S. purse seine and Japanese pole and line fisheries

all observed higher yellowfin catch rates in the western and central Pacific during El Niño events,

which was associated with the vertical extension of temperature habitat for yellowfin [19].

Changes in oxygen concentration during ENSO events affect the vertical distribution of

tuna, as oxygen is an important factor that alters the vertical habitat space during different

ENSO phases [46, 55]. During El Niño events, the low oxygen waters under the thermocline

are pulled upward as it gets shallower in the western Pacific and reduces the vertical habitat

space, whereas the deepening of thermocline in the eastern Pacific pushes down the low oxy-

gen waters under the thermocline and extends the vertical habitat space [46]. As different tuna

species have different limits of oxygen tolerance [35, 36], their vertical habitat spaces vary. Big-

eye have a higher tolerance of low dissolved oxygen concentration when compared to other

tuna species, allowing them to have a wider vertical habitat [6, 34–36]. Yellowfin and albacore

have lower tolerance of low oxygen levels, so lower oxygen in the thermocline would restrict

them to surface waters [6, 46]. Skipjack are less vulnerable to changes in oxygen due to ENSO

events since they mainly stay above the thermocline due to their high oxygen demand [56],

and the ENSO-induced changes in oxygen mainly occur in or below the thermocline [7].

Despite the shoaling of the thermocline compressing the vertical habitat space with lower oxy-

gen in the western Pacific during El Niño events, it expands bigeye’s preferred depth habitat,

as their high tolerance to low oxygen enables them to access a colder habitat at shallower

depths. Howell and Kobayashi [30] suggested the higher bigeye catch rates by the Hawaii long-

line fishery around the Palmyra Atoll during the winter months of El Niño events could be due

to the El Niño-induced changes in oxygen that expand the vertical habitat for bigeye. On the

other hand, yellowfin and skipjack have lower tolerance to low oxygen, and as their vertical

habitat compresses in the western Pacific, it expands in the eastern Pacific during the El Niño

events. One consequence of changing oxygenated vertical habitat is the driving of yellowfin

and skipjack eastward toward more favorable oxygen conditions [46]. The decreased oxygen

concentration may also decrease the foraging frequency of yellowfin and skipjack at deeper

depths during daytime [29]. As the Hawaii longline fleet deploys deep-set hooks in the morn-

ing [43, 44], ENSO events could affect the Hawaii deep-set longline CPUE for these species.

ENSO events also shift the tuna habitat and distribution horizontally. During El Niño (La

Niña), the western Pacific warm pool moves eastward (westward), causing the Eastern Warm

Pool Convergence Zone to move eastward (westward) [57]. Surface tuna, like skipjack, mirror

the movement of the convergence zone to prey on the aggregate plankton and micronekton.

This may explain the extension of the purse seine fleet to the east, and increased effort in the

central Pacific during El Niño events, and in the west of the reduced warm pool during La

Niña events [20, 48]. Howell and Kobayashi [30] also suggested the eastward shifts in preferred

habitat during El Niño might explain the increase in bigeye catch rates around the Palmyra

Atoll by the Hawaii longline fleet. A reverse shift of habitat and decrease in bigeye catch rates

in the same region were observed during the onset of La Niña in June 1998 [30]. Studies also

found northward shifts in habitats and catches during ENSO events. Zhou et al. [47] found

bigeye habitat hotspots developed north of the Hawaiian Islands during El Niño events. Lu

et al. [21] found yellowfin hook rates increased in the northern tropical Pacific Ocean, suggest-

ing a northward expansion of yellowfin’s preferred habitat during La Niña events.

Data and model

This section first describes the data used for modeling, and then explores the potential rela-

tionships between climate factors and trip distance/fishing location of the Hawaii longline
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fleet. The potential relationships between climate factors and overall catchability, and catch-

ability of different tuna species by the Hawaii longline fleet are also explored. These potential

relationships demonstrate the possible connections between climate factors and their impacts

on tuna abundance and spatial distributions and the subsequent effects on vessels’ trip dis-

tance. Last, it describes the model specification.

Data. Fishing location, effort, and landing data for 1991–2020 came from the Hawaii fed-

eral logbook program [58]. Federal logbook records data include date, time, and location of

individual fishing sets and hauls, number of fish landed by species in an individual fishing set,

number of hooks used per set, and set type (deep vs. shallow). Trip-level data recorded in the

logbook include vessel information, permit status, departure and return date, and departure

and return port. To focus on the relationships between trip distance and climate change and

variability for the main fishing port of the Hawaii deep-set longline fishery, only deep-set trips

that departed from, and returned to, the Honolulu port are included in this study. The final

dataset includes 31,921 fishing trips, representing 96% of total deep-set trips (33,137 trips)

between 1991 and 2020.

Trip distance is defined as the sum of the distance from the departure port to the first fish-

ing set and haul locations (average of begin set, end set, begin haul, and end haul locations),

the distances between all individual fishing set and haul locations, and the distance from the

last fishing set and haul locations to the returning port. Travel distance was calculated using

the geosphere package [59] in R Version 1.2.5033 [60].

SST data came from NOAA OceanWatch, CoralTemp, v3.1 [61]. To calculate the monthly

SST for the whole Hawaii deep-set longline fishing ground (0˚ to 40˚N and 180˚ to 120˚W),

monthly SST was obtained for each 0.05 x 0.05 pixel for the whole fishing ground and averaged

over the entire area. Oceanic Niño Index (ONI), which is calculated by the NOAA National

Weather Service, Climate Prediction Center, is used to examine the relationships between

ENSO events and trip distance. It represents a 3-month running mean of anomalies in the SST

(Extended Reconstructed Sea Surface Temperature, ERSST.v5 SST) from the average SST in

1991–2020 in the Niño 3.4 region (120˚W– 170˚W, 5˚N– 5˚S). When ONI is greater (lower)

than the threshold of +/-0.5 for five consecutive months, it is classified as an El Niño (La Niña)

episode.

Annual trip distance and SST. The annual average trip distance has increased over the

30-year period (1991–2020) (Fig 2). Trip distance underwent a rapid increase in 1993, 1994,

and 1997, with some fluctuations between 1998 and 2005, and another rapid increasing trend

after 2005, until reaching a maximum in 2010, then experienced a steady decline in the 2010s.

Fig 2 also displays two SSTs: average annual SST for haul locations, and average annual SST

for the whole fishing ground of the Hawaii deep-set longline fleet. The average annual SST for

haul locations was calculated using the daily SST that matched the begin haul location of an

individual set in a fishing trip at 5 km resolution, and then averaged across all the matching

daily SSTs in a year to calculate the average annual SST for all haul locations. The average

annual SST for the whole fishing ground was calculated using the monthly SST for the whole

Hawaii deep-set longline fishing ground (0˚ to 40˚N and 180˚ to 120˚W) at 5 km resolution,

and averaged over a year. The SST for matching haul location showed a slight decreasing trend

as the Hawaii longline fleet has expanded fishing location to higher latitudes and further east

into cooler waters. The SST for the whole fishing ground experienced a slight increasing trend,

especially after the strong La Niña episode started in mid-1998.

Monthly trip distance and ONI. The monthly trip distance has a seasonal component

(i.e. shorter trips in winter and longer trips in summer) and it shows an increasing trend over

time (Fig 3). When comparing the monthly trip distance with ONI, the monthly trip distance

was seasonally adjusted and detrended (Fig 4). Smaller deviations of trip distance from the
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seasonally adjusted trend was observed during ENSO events (ONI�-0.5 or ONI�0.5), espe-

cially during strong ENSO events (large ONI in absolute value).

Annual effort-weighted mean fishing location and SST. As trip distance was generally

increasing over time, it is unknown whether fishing trips were shifting to a specific direction

in relation to climate factors. Annual effort-weighted mean location (latitude, longitude) was

calculated using the begin haul location (latitude, longitude) of an individual fishing set, multi-

plied by the number of hooks set, aggregated over a year, and divided by the annual hooks set.

The scatter plot between the 5-year running mean SST of fishing grounds and weighted lati-

tudes showed an increasing trend (slope = 4.21, p-value< 0.01, R2 = 0.29); indicating the

Fig 2. Annual trip distance and SST for haul location and fishing grounds, 1991–2020.

https://doi.org/10.1371/journal.pclm.0000143.g002

Fig 3. Monthly trip distance, 1991–2020.

https://doi.org/10.1371/journal.pclm.0000143.g003
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higher the SST of the fishing grounds of the Hawaii longline fleet, the higher the latitude in

which the Hawaii longline vessels operated (Fig 5). The scatter plot between the 5-year running

mean SST of fishing grounds and weighted longitude showed a decreasing trend (slope =

-5.69, p-value< 0.01, R2 = 0.46); indicating the higher the SST of the fishing grounds, the

more eastward in which the Hawaii longline vessels operated (Fig 6).

Monthly effort-weighted mean fishing location and ONI. Similar to the monthly trip

distance, the monthly effort-weighted mean latitude and longitude were seasonally adjusted

and detrended when compared to the ONI in Figs 7 and 8, respectively. After the fishing

Fig 4. Seasonally adjusted and detrended monthly trip distance and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g004

Fig 5. Annual effort-weighted mean haul latitude and 5-year running mean SST for fishing grounds, 1995–2020.

https://doi.org/10.1371/journal.pclm.0000143.g005
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locations were seasonally adjusted and detrended, smaller deviations of weighted latitude and

longitude from the seasonally adjusted trend were observed during ENSO events (ONI�-0.5

or ONI�0.5), especially during strong ENSO events (large ONI in absolute value).

Annual trip CPUE and SST. CPUE is one of the main drivers of commercial fishers’ deci-

sions regarding distribution of fishing effort [23–25, 27]. The annual average trip CPUE for

deep-set trips showed a decreasing trend, the opposite of the SST trend for the whole fishing

grounds (Fig 9). Trip-level CPUE (per 1,000 hooks) was calculated as the number of fish

landed in a trip divided by the number of hooks set in a trip, multiplied by 1,000 for all species

Fig 6. Annual effort-weighted mean haul longitude and 5-year running mean SST for fishing grounds, 1995–2020.

https://doi.org/10.1371/journal.pclm.0000143.g006

Fig 7. Seasonally adjusted and detrended monthly effort-weighted mean haul latitude and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g007
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landed. The scatter plot between the 5-year running mean SST of the whole fishing grounds

and 5-year running mean annual trip CPUE showed a decreasing trend (slope = -5.63, p-value
< 0.01, R2 = 0.27), indicating the higher the SST in the fishing grounds, the lower the trip

CPUE (Fig 10). Rising SST could lower CPUE for the Hawaii longline fishery as 1) higher tem-

peratures would affect the production of phytoplankton and zooplankton on which larval and

juvenile tuna feed, thereby influencing the survival of larval and juvenile tuna [6]; 2) the size of

the phytoplankton was a proxy for food quality for larval and juvenile bigeye, and it was a pre-

dictor of bigeye tuna catch rates with a four-year lag for the Hawaii deep-set longline fishery

Fig 8. Seasonally adjusted and detrended monthly effort-weighted mean haul longitude and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g008

Fig 9. Annual trip CPUE and SST for fishing grounds, 1991–2020.

https://doi.org/10.1371/journal.pclm.0000143.g009
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[62]. Porreca [63] also found a significant relationship between SST and fishing yield in the

WCPO.

Quarterly trip CPUE and ONI. Trip CPUE exhibited seasonal patterns, with higher trip

CPUE in the first and fourth quarters, and lower trip CPUE in the third quarter. Therefore,

when comparing the quarterly CPUE with ONI, the quarterly CPUE was seasonally adjusted.

Figs 11–13 show the ONI and the seasonally adjusted quarterly trip CPUE for bigeye, yellow-

fin, and albacore (the top three species landed), respectively. Some patterns observed in Fig 11

include bigeye CPUE and ONI moving the same directions during El Niño events in 1994/95,

Fig 10. Five-year running mean annual trip CPUE and 5-year running mean SST for fishing grounds, 1995–2020.

https://doi.org/10.1371/journal.pclm.0000143.g010

Fig 11. Seasonally adjusted quarterly trip CPUE of bigeye and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g011
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2002, 2004, 2009/10 and La Niña events in 1995/96, 2011. In Fig 12, yellowfin and ONI moved

in opposite directions during El Niño events in 1992, 1997/98, 2015/16, and La Niña events in

2007/08 and 2010/11. Albacore and ONI also moved in opposite directions during El Niño

events in 1992, 1994, 1997/98, 2002, 2006, 2019, and La Niña conditions in 1998–2000, 2007,

2010/11 (Fig 13).

To examine the correlations between ENSO events and CPUE in a trip statistically, Pearson

correlations between the trip-level CPUE for different tuna/non-tuna species and El Niño and

La Niña conditions during the trip (here defined as 1 when ONI�0.5 for El Niño condition or

Fig 13. Seasonally adjusted quarterly trip CPUE of albacore and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g013

Fig 12. Seasonally adjusted quarterly trip CPUE of yellowfin and ONI, 1992–2020.

https://doi.org/10.1371/journal.pclm.0000143.g012
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0 otherwise, and 1 when ONI�-0.5 for La Niña condition or 0 otherwise) were conducted

(Table 1). Pearson correlations were examined for the whole study period and two sub-periods

(1991–2001 and 2002–2020); because the deep-set longline fishery started to increase with

higher fishing effort and landings with the closure of the shallow-set longline fishery between

2001 and 2004, and the spatial distribution of the Hawaii deep-set longline fishery started to

expand further from the port in 2002 (Fig 1). Trip-level CPUE for bigeye, skipjack, and non-

tuna species was positively correlated with El Niño conditions (significant for overall and two

sub-periods) and negatively correlated with La Niña conditions (significant for skipjack and

non-tuna). The negative correlation between trip-level CPUE for bigeye and La Niña was sig-

nificant for 1991–2001 only. Relative to bigeye, opposite and significant correlations were

observed for yellowfin and albacore for the whole study period and during some sub-periods.

Correlation between CPUE for all species and ENSO periods followed the same patterns as the

bigeye which represents the highest proportion of catches in a trip.

Model. This study uses a regression model to examine the effects of climate change and

variability on fishing trip distance, following a similar approach to Haynie & Pfeiffer [23].

They used cold pool size as the climate factor, whereas this study includes two climate variables

that might affect trip distance in the model specification. The first one, monthly SST for the

entire fishing ground of the Hawaii deep-set longline fishery, can estimate how changes in SST

over time in the whole fishing ground could affect trip distance. The sector factor, ONI index,

is included to examine how ENSO events could affect trip distance, as different tuna species

respond differently to ENSO events. The advantage of using ONI as a continuous variable is its

ability to capture the effect of variation in ONI on trip distance; a more severe ENSO event

might have a greater effect on trip distance. Because CPUE for different tuna species had oppo-

site effects during El Niño and La Niña conditions, ONI is modeled as a quadratic relationship

with trip distance.

In Haynie & Pfeiffer [23], biological, regulatory, trip specific, and vessel specific factors that

potentially could affect trip distance are also considered in the model specification. The final

model specification (i.e., what specific variables to include in the model) is determined based

on the lowest Akaike Information Criterion (AIC), root mean squared error (RMSE), and

mean absolute error (MAE). In addition to the two climate factors, the final model for empiri-

cal estimation includes fish abundance, diesel price, fisheries policies that restrict area access,

unique vessel characteristics, and annual variations.

The higher the fish abundance, the shorter the trip required to find the target species.

Hawaii longline deep-set fishery’s fishing effort exhibited distinct quarterly spatial movement

Table 1. Pearson correlation between trip-level CPUE by species and ENSO periods, 1991–2020, 1991–2001, and 2002–2020.

1991–2020

when ONI�0.5

(El Niño)

1991–2020

when ONI�-0.5

(La Niña)

1991–2001

when ONI�0.5

(El Niño)

1991–2001

when ONI�-0.5

(La Niña)

2002–2020

when ONI�0.5

(El Niño)

2002–2020

when ONI�-0.50

(La Niña)

Trip CPUE for bigeye 0.119�� -0.011 0.093�� -0.048�� 0.152�� -0.002

Trip CPUE for yellowfin -0.016�� 0.069�� -0.030� -0.001 -0.006 0.099��

Trip CPUE for albacore -0.019�� 0.050�� -0.012 -0.016 -0.013 0.013

Trip CPUE for skipjack 0.124�� -0.065�� 0.240�� -0.130�� 0.107�� -0.075��

Trip CPUE for non-tuna 0.034�� -0.039�� 0.099�� -0.157�� 0.014� -0.007

Trip CPUE for all species 0.086�� 0.004 0.010�� -0.098�� 0.010�� 0.010

Note

�� significant at the 1% level (2-tailed)

� significant at the 5% level (2-tailed).

https://doi.org/10.1371/journal.pclm.0000143.t001
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[40] and seasonal differences in catch rates of different species [39], therefore, quarterly bio-

mass is included in the model. Because bigeye tuna abundance is unknown on a quarterly

basis, it is represented by the effort-adjusted aggregate bigeye landings of the entire deep-set

fleet in a quarter. It was calculated as the total bigeye landings in all deep-set trips in a quarter

divided by the total hooks used in all deep-set trips in that quarter, multiplied by 1,000 (for

unit per 1,000 hooks). Quarterly non-bigeye biomass was calculated in a similar way for non-

bigeye species. These variables can capture seasonal variations in stock, migratory patterns,

and abundances that affect CPUE. This calculation of biomass followed the same method as

Peña-Torres et al. [25] who used the effort-adjusted aggregate monthly jack mackerel landings

of the entire Chilean straddling pelagic fleet as a proxy for the monthly biomass and included

it as a covariate to estimate the impact of El Niño events on fishing location choice. Inflation

adjusted diesel price is used to identify how it influenced trip distance as fuel cost is the most

important trip cost item in the Hawaii longline fishery [38]. Other factors include spatial

restriction policies that affected distance for trips taken during the periods when closures were

in place in the WCPO and EPO, conditions that were unique in a particular year and affected

all vessels equally, and covariates that are unique to individual vessels. Vessel specific variables

capture individual vessels’ unique features like size, gross tonnage, and fuel efficiency. These

features affect the distance travel capability, hold capacity, and distance traveled. Vessel spe-

cific variables can also capture fisher experience, knowledge, and skills that could influence

trip distance. Vessel specific fixed effects are modeled as dummy variables for individual

vessels.

In addition to using distance per trip as the dependent variable, another model used trip

distance per fish per trip as the dependent variable which is defined as the trip distance divided

by the number of fish kept per trip. This can be considered the average cost of travel [23]. For

example, if landings increase proportionally with trip distance, distance per fish is constant.

Likewise, if landings increase at a higher rate than trip distance, distance per fish decreases.

Due to the non-normal distribution of trip distance, a generalized linear model (GLM)

using gamma distribution with log link model and vessel fixed effects is estimated to address

the potential heteroscedasticity in the error term. The functional form to estimate vessel trip

distance is specified as:

f ðYijÞ ¼ β0 þ β1SSTm þ β2ENSOm
2 þ β3DIESELm þ β4BIOMASSbig;q þ β5BIOMASSnon� big;q

þ β6C1ij þ β7C2ij þ β8yEy þ β9iVi þ εij:ð1Þ

where i stands for individual vessel, j stands for individual fishing trip, m stands for month, q
stands for quarter, y stands for year.

• Yij is trip distance or trip distance per fish for individual vessel i in trip j.

• SSTm is monthly sea surface temperature for the entire fishing ground.

• ENSOm
2 is the square of ONI.

• DIESELm is inflation adjusted monthly diesel price.

• BIOMASSbig,q is the effort-adjusted aggregate bigeye landings of the entire deep-set fleet in a

quarter.

• BIOMASSnon-big,q is the effort-adjusted aggregate non-bigeye landings of the entire deep-set

fleet in a quarter.

• C1ij and C2ij take the value of one when bigeye tuna closures were in effect that impacted

vessel i in trip j (based on vessel’s dual permit status and size), and 0 otherwise.
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� C1ij = 1 represents closure in WCPO

� C2ij = 1 represents closure in EPO.

• Ey are year dummy variables.

• Vi are individual vessel specific fixed effects.

The model was run in the R statistical programming language, version 3.1.2 [60]. Multicol-

linearity of covariates was checked using variance inflation factor (VIF). VIF values for all

covariates (excluding year and vessel specific fixed effects) in the estimated model were less

than 2, indicating no multicollinearity. In order to control for serial correlation and heterosce-

dastic errors at the vessel level, clustered standard errors at the vessel level were used. Testing

of clustered standard errors were conducted using lmtest package in R [64].

Results

Table 2 shows the model results, with distance per trip and distance per fish as the dependent

variables. All coefficients were significant, with the exception of diesel price on distance per

fish. The positive coefficient for SST means the higher the SST of the fishing grounds of the

Hawaii longline fleet, the longer the trip distance and distance per fish. The coefficient for

ONI2 is negative, representing shorter trip distance with El Niño and La Niña conditions. The

coefficients of other variables had the expected sign. The greater the bigeye biomass and non-

bigeye biomass, the shorter the trip distance and distance per fish, as it is easier to catch a fish

with greater biomass that requires less travel. Diesel price has a negative correlation with trip

distance but insignificant correlation with distance per fish, indicating the higher diesel price,

the shorter the trip distance, likely due to higher trip costs. However, an increase in diesel

price does not affect the average trip distance per fish. This is possible if longer travel distance

is compensated for more landings proportionally. Closures in the WCPO compel vessels to

Table 2. Estimated coefficients from the model estimation.

Dependent variable = Trip distance Dependent variable = Distance per fish

SST fishing ground 0.0414�� (0.0031) 0.0294�� (0.0069)

ONI2 -0.0496�� (0.0028) -0.0483�� (0.0087)

Diesel -0.0208� (0.0088) -0.0113 (0.0261)

Biomass of bigeye -0.0591�� (0.0034) -0.1434�� (0.0094)

Biomass of non-bigeye -0.0055�� (0.0017) -0.0661�� (0.0084)

Closures in WCPO 0.3708�� (0.0162) 0.3877�� (0.0539)

Closures in EPO -0.1801�� (0.0257) -0.2655�� (0.0434)

Constant 6.7799�� (0.0953) 10.6416�� (0.1953)

Year effects Included Included

Vessel fixed effects Included Included

Observations (number of trips) 31,918 31,912

R2 0.37 0.27

AIC 516,864 639,925

RMSE 836 15,825

MAE 645 5,589

Note: Numbers in parentheses are clustered standard error at vessel level.

� p < 0.05

��p< 0.01.

https://doi.org/10.1371/journal.pclm.0000143.t002
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travel further to the EPO, whereas closures in the EPO constrain vessels to stay in the WCPO,

and therefore, shorten the travel distance for vessels which would otherwise go to the EPO if it

were opened. Because the regression is gamma with log link, coefficients in Table 2 are con-

verted by exponentiation to acquire the ratio by which trip distance is multiplied due to the

change of a unit of independent variable (Table 3).

When the dependent variable is trip distance, a one degree increase in SST is associated

with 4.2% increase in trip distance (100 km, by using the mean travel distance = 2,356 km). An

increase in ONI from 0 to 1 corresponds to a 5.0% (114 km) decrease in trip distance. Because

of the quadratic relationship with trip distance, the larger the absolute value of ONI, the larger

the decrease in trip distance. Compared with climate factors, fishery closures have larger effects

on trip distance. WCPO closures induce longer trip distance (44.9%) (1,058 km), and EPO clo-

sures induce shorter trip distance (17.0%) (388 km). As expected, the higher the bigeye bio-

mass (number of fish per 1,000 hooks), the shorter the trip distance (5.7%) (135 km). To a

lesser extent, the larger the non-bigeye biomass, the shorter the trip distance (0.6%) (13 km).

An increase in diesel price by a dollar induces a 2.1% (49 km) decrease in trip distance.

When treating distance per fish as the dependent variable instead of trip distance, SST and

ENSO events have similar effects. Biomass has larger negative effects (~6%–8% more) on dis-

tance per fish, indicating efficiency gain from greater biomass.

Conclusion and suggestion

This study used 30 years of fishery-dependent data and environmental variables to quantify

the relationships between trip distance of the Hawaii longline fleet and climate factors. The

model results indicate that vessel trip distance was correlated with SST and ENSO events, pos-

sibly through their influence on the spatial distributions of tunas and the subsequent effects on

catch rates. However, the effects from changes in SST and ENSO events were opposite. The

positive relationship of trip distance with SST indicates that the rising SST of Hawaii longline

fishing grounds over the study period was associated with longer trip distance. This could be

due to the opposite correlation between SST and trip CPUE, and a lower CPUE could induce

longer trip distance as more time is required to search for target species. The Hawaii longline

fleet’s fishing location has shifted toward higher latitude and eastward from the Honolulu fish-

ing port. This is consistent with the poleward shift in tuna habitat that occurred in the North

Pacific Ocean during the period of warming ocean [17] and the increasing trend of longline

Table 3. Estimated trip distance effect (ratio by which trip distance is changed) based on coefficients from model estimation.

Dependent variable = Trip distance Dependent variable = Distance per fish

SST fishing ground 1.042�� 1.030��

ONI = 1/-1 0.952�� 0.953��

ONI = 2/-2 0.820�� 0.824��

ONI = 3/-3 0.640�� 0.648��

Diesel 0.979� 0.989

Biomass of bigeye 0.943�� 0.866��

Biomass of non-bigeye 0.994�� 0.936��

Closures in WCPO 1.449�� 1.474��

Closures in EPO 0.835�� 0.767��

Note

� p<0.05

�� p<0.01.

https://doi.org/10.1371/journal.pclm.0000143.t003
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catches of tropical tuna in subtropical areas of the western Pacific Ocean over the past four

decades [11]. The negative relationship of trip distance with ENSO events suggests that the

Hawaii longline fleet took advantage of the changes in spatial distributions of different tuna

species during ENSO events, and utilized its locational advantage to travel in different direc-

tions in the Pacific Ocean to achieve higher CPUE that occurred closer to the Honolulu port,

thereby shortening its travel distance. Several empirical studies supported higher tuna CPUE/

recruitment during ENSO events in the same fishing grounds of the Hawaii longline fleet.

These include bigeye habitat hotspots developed north of the Hawaiian Islands during El Niño

events [47]; above (below) average bigeye recruitments coincided with strong El Niño (La

Niña) events in the EPO [65], an area where the Hawaii longline fleet was likely to operate in

the third quarter of the year [40]; and higher yellowfin hook rates observed during La Niña

events by tuna longliners in the same area where Hawaii longline fleet operated due to a north-

ward expansion of yellowfin’s preferred habitat [21]. These past findings were consistent with

the correlations of Hawaii longline CPUE during ENSO events (higher bigeye CPUE during El

Niño events and higher yellowfin CPUE during La Niña events). The observations of Hawaii

longline fleet fishing closer to the Honolulu port during ENSO events (Figs 7 and 8) suggest

that the Hawaii longline fleet was able to achieve higher CPUE with shorter travel distance

during ENSO events.

It is important to note that although the model result predicts an increase in trip distance

with rising ocean temperatures, the future effect is expected to be small, as it takes a long time

for ocean temperature to increase by one degree. Projections showed that SST in the WCPO

will increase by 2.5˚C to 3.5˚C by 2100 under the “business-as-usual” greenhouse gas emis-

sions RCP8.5 scenario [66]. Therefore, higher SST can be considered a long-term impact on

the fishery. On the other hand, ENSO events could happen in any year and will probably be

more frequent [67] and more extreme in the future [68], leading to greater influence on trip

distance. The model results show non-climate factors such as fisheries management policies,

biomass, and diesel price also affected trip distance. Particularly, area closures that affected

access, and bigeye biomass that influenced the ease of finding fish, had larger effects on trip

distance when compared to climate factors. This is similar to the findings in Haynie & Pfeiffer

[23] that trends in climate had a relatively low impact on the spatial distribution of fishing

effort.

Some studies included the lagged effects of climate impacts on fishing location [22, 23, 25,

26], but they are omitted in this study. These effects are complex and difficult to identify as cli-

mate change could affect spawning grounds, larval survival, biomass, and recruitment, and

some impacts could take years to realize [24]. Peña-Torres et al. [25] pointed out that the ONI

index could be viewed as an autoregressive process, and inconsistent model estimates might

arise when including the contemporaneous ONI and its lags in the model. Since no study has

identified the lagged effects of ENSO events on the longline fisheries targeting bigeye tuna, this

study only used the contemporaneous ONI index.

The estimated changes in travel distance can be linked with the trip cost model in Chan &

Pan [69] to determine the changes in trip costs due to climate change and variability. Chan &

Pan’s [69] model used trip specific variables including distance and other vessel specific vari-

ables to predict fishing trip costs for the Hawaii longline fishery. Using the estimated trip cost

model for the Hawaii longline fishery (gamma with log link) and the mean trip distance (2,356

km), Table 4 shows the estimated trip cost impacts due to changes in trip distance (from

Table 2). SST changes have relatively low impacts on trip costs (~1%); ENSO events have larger

(~1% to 9%) effects on trip costs.

With the significant relationships between climate factors and trip distance found in this

study combined with the projected increase in ocean temperature and the poleward and
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eastward shifts in bigeye tuna in the future [14], it is anticipated that trip distance will extend

further east of Honolulu in the future. Instead of landing the catches in Hawaii, it could

become more economical for vessels to land their catches on the mainland west coast. Prior to

2010, fewer than 10 trips unloaded their landings in the west coast, but that number has

increased to around 80 per year recently (5% of total trips in a year). This trend could be the

result of climate change shifting the spatial distribution of bigeye tuna further away from

Hawaii. If SST continues to increase, this could lead to lower supply of wild caught fresh

pelagic fish in Hawaii. Consumption of seafood is culturally important in Hawaii. The annual

average seafood consumption in Hawaii is 37 lb per person (including non-commercial catch

from 2000 to 2009) [70], which is consistently higher than the national average (<20 lb) [42].

The findings in this study provide information to fisheries managers when considering the

management actions related to the potential effect of climate change on fresh seafood supply

to the island economy.

Climate change will continue to impact the ecosystem structure of the ocean. Increasing

ocean temperature is expected to persist into the future and affect fish biomass and spatial dis-

tribution. The maximum catch potential around the Hawaii EEZ was projected to decrease by

15%–30% by 2100 under the RCP8.5 scenario [3]. Tuna biomass and distribution are expected

to adjust as tunas are highly mobile species that follow productive areas. Tuna distribution

models projected bigeye tuna to shift poleward by the end of the century [17]. Bigeye biomass

in the WCPO is projected to decline by the end of the century due to unfavorable spawning

and feeding habitat including higher SST, less food, and decreased dissolved oxygen concen-

tration in sub-surface waters [7]. On the other hand, bigeye biomass in the EPO is projected to

increase as SST in the EPO will become optimal for bigeye spawning by 2100. Additionally, the

habitat for adult bigeye will improve due to higher dissolved oxygen concentration allowing

adult bigeye to travel to a deeper forage layer [6, 7]. However, not the entire EPO is expected

to be a better environment for bigeye, as the oxygen minimum zone in the tropical EPO is pro-

jected to expand, limiting their habitat in this area [40]. ENSO events are projected to occur

more frequently under some global climate change scenarios [67, 68] and their intensity may

increase as well [71]. As a result, it is expected that commercial fishing fleets will continue to

change their fishing locations. New records of ocean temperatures and more frequent and

severe ENSO events could happen in the future. It is unknown whether the future climate sce-

narios will severely affect the survival rates of tuna larvae and change their spawning grounds

dramatically. Nevertheless, this reduced form of estimation of climate change and climate vari-

ability on trip distance provides baseline information to include fisher behavior in light of cli-

mate change and variability. Better understanding fisher behavior can support future

Table 4. Estimated trip cost impacts based on trip distance model in this study and trip cost model in Chan &

Pan [69].

Estimated percentage change in trip costs

SST fishing ground 1.1%

ONI = 1/-1 -1.3%

ONI = 2/-2 -4.7%

ONI = 3/-3 -9.3%

Diesel -0.5%

Biomass of bigeye -1.5%

Biomass of non-bigeye -0.1%

Closures in WCPO 11.9%

Closures in EPO -4.3%

https://doi.org/10.1371/journal.pclm.0000143.t004
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ecosystem modeling of the climate change impacts on fisheries and fisheries management

related to climate-driven changes of marine ecosystems.
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